From 1 - 10 / 17
  • These data are linked to what appears to be an unfinished report/paper by Pat Quilty. An extract of the unfinished report is available below, and the full document is included in the data download. These data are also linked to a collection in the biodiversity database, and are also related to another record (both listed at the provided URLs). Foraminiferids are recorded from samples collected on Mac. Robertson Shelf and Prydz Bay, East Antarctica in 1982, 1995 and 1997. Most are identifiable from previous literature but a new enrolled biserial agglutinated genus is noted but not defined. Distribution is related to oceanographic factors. The Mac. Robertson Shelf-Prydz Bay region off the East Antarctic coast is that segment of the southern Indian Ocean between latitudes 66 degrees and almost 70 degrees S, and longitudes 60 degrees and 80 degrees E. It includes Mac. Robertson Shelf, the continental shelf, bounded seaward by the 500 m isobath, and Prydz Bay, the deepest re-entrant into the east Antarctic shield and the outlet for the Lambert Glacier at its southern end. The Lambert Glacier is the world’s largest glacier and drains some 1 000 000 km2 of East Antarctica. The marine region studied here covers some 140 000 km2. Several research cruises to the region have collected sediment samples that yielded modern and recycled foraminiferid faunas. The modern component of the faunas has not been recorded in detail previously. This paper records the details of the taxonomy and distribution of species collected during marine geology/geophysics cruises that provided the foraminiferids discussed in Quilty (1985, 2001), O’Brien (1992), O’Brien et al. (1993, 1995) and Harris et al. (1997). The geophysical results and interpretations of the 1982 voyage of MV Nella Dan are described by Stagg (1985) and this provides also the general setting and nomenclature of Prydz Bay. Two cruises (1995 and 1997) of RSV Aurora Australis collected samples and these provided the basis for Quilty’s records of foraminiferids and other components on a sample-by-sample basis in O’Brien et al. (1995) from 51 samples, and from a further 27 samples reported in Harris et al. (1997). The 1995 cruise also yielded the recycled foraminifera recorded by Quilty (2001) and the Mesozoic material documented by Truswell et al. (1999). Neither of these cruise records provided details of the faunas to the level covered here. Further studies for the region are given in the results of ODP Legs 119 and 188. The impetus for conducting this review comes from two sources. Firstly, few foraminiferids have been documented from this region, and even fewer have been figured. Secondly, 2007-2008 was designated the [fourth] International Polar Year (IPY) and one of the major programs is the Census of Antarctic Marine Life (CAML), a component of the global Census of Marine Life (CML). This paper is a contribution to that project. Included in the review are faunas from the modern environment and some which may be ‘Late Cenozoic’ in which the faunas are of the same species as the modern and in which data from the modern can be, and have been, used to infer past environments (Fillon 1974, Kellogg et al. 1979, Ward and Webb 1986). The aims of this paper are: - to document the species of foraminifera recovered from geology/geophysics cruises to the Mac. Robertson Shelf and Prydz Bay region, offshore East Antarctica (Fig. 1); - to make the nomenclature of species recorded consistent with latest taxonomic practice; - to characterise the faunas by diversity and dominance factors; and - to discuss the controls on the distribution of faunas recorded.

  • Metadata record for data from ASAC Project 1060 See the link below for public details on this project. Taken from the referenced publications: Sea ice exhibits a marked transition in its fluid transport properties at a critical brine volume fraction Pc of about 5 percent, or temperature Tc of about -5 degrees Celsius for salinity of 5 parts per thousand. For temperatures warmer than Tc brine carrying heat and nutrients can move through the ice, whereas for colder temperatures the ice is impermeable. This transition plays a key role in the geophysics, biology, and remote sensing of sea ice. Percolation theory can be used to understand this critical behaviour or transport in sea ice. The similarity of sea ice microstructure to compressed powders is used to theoretically predict Pc of about 5 percent. The snow cover on Antarctic sea ice often depresses the ice below sea level, allowing brine or seawater to infiltrate, or flood the snowpack. This significantly reduces the thermal insulation properties of the snow cover, and increases the ocean/atmosphere heat flux. The subsequent refreezing of this saturated snow or slush layer, to form snow-ice, can account for a significant percentage of the total ice mass in some regions. The extent of saturated snow cannot presently be estimated from satellite remote-sensing data and, because it is often hidden by a layer of dry snow, cannot be estimated from visual observations. Here, we use non-parametric statistics to combine sea-ice and snow thickness data from drillhole measurements with routine visual observations of snow and ice characteristics to estimate the extent of brine-infiltrated snow. During a field experiment in July 1994, while the R.V. Nathaniel B. Palmer was moored to a drifting ice floe in the Weddell Sea, Antarctica, data were collected on the sea-ice and snow characteristics. We report on the evolution of ice which grew in a newly opened lead. As expected with the cold atmospheric conditions, congelation ice initially formed in the lead. Subsequent snow accumulation and large ocean heat fluxes resulted in melt at the base of the ice, and enhanced flooding of the snow on ice surface. This flooded snow subsequently froze, and, five days after the lead opened, all the congelation ice had melted and twenty-six centimetres of snow ice had formed. We use measured sea-ice and snow salinities, thickness and oxygen isotope values of the newly formed lead ice to calculate the salt flux to the ocean. Although there was a salt flux to the ocean as the ice initially grew, we calculate a small net fresh-water input to the upper ocean by the end of the 5 day period. Similar processes of basal melt and surface snow-ice formation also occurred on the surrounding, thicker sea ice. Oceanographic studies in this region of the Weddell Sea have shown that salt rejection by sea-ice formation may enhance the ocean vertical thermohaline circulation and release heat from the deeper ocean to melt the ice cover. This type of deep convection is thought to initiate the Weddell polynya, which was observed only during the 1970s. Our results, which show than an ice cover can form with no salt input to the ocean, provide a mechanism which may help explain the more recent absence of the Weddell polynya.

  • These data describe pack ice characteristics in the Antarctic sea ice zone. These data are in the ASPeCt format. National program: United States Vessel: Nathaniel B. Palmer Dates in ice: 1 Sept 2007 - 31 Oct 2007 Observers: Penelope Wagner, John Pena, Sarah Anderson and others. Summary of voyage track: 06/09 3 GMT first record of ice edge at approx. 63 degrees 22 S, and 68 degrees 25 W toward Palmer Station, Antarctica in the Amundsen Sea due to electrical fire that began in Drake's Passage en route to the Bellingshausen Sea, Antarctica. 19 GMT arrived at NBP at Palmer Station, Antarctica at 64 degrees 46S and 64 degrees 04W to respond to safety protocol with NSF and Raytheon. 08/09 18:30 GMT depart Palmer Station toward Punta Arenas, Chile port. 09/09 22 GMT reach ice edge toward Chile. 24/09 17 GMT first record of ice edge at approx. 66 degrees 47S and 89 degrees 05W toward ice station Belgica in Bellingshausen Sea, Antarctica. 27/09 23GMT NBP parked at approximately 70 degrees 41S and 90 degrees 58W at Ice Station Belgica to perform 4 week station work. 24/10 10:30 GMT depart Ice Station Belgica toward Punta Arenas, Chile 27/10 8GMT reached ice edge. Total observations: 192 The fields in this dataset are: SEA ICE CONCENTRATION SEA ICE FLOE SIZE SEA ICE SNOW COVER SEA ICE THICKNESS SEA ICE TOPOGRAPHY SEA ICE TYPE RECORD DATE TIME LATITUDE LONGITUDE OPEN WATER TRACK SNOW THICKNESS SNOW TYPE SEA TEMPERATURE AIR TEMPERATURE WIND VELOCITY WIND DIRECTION FILM COUNTER FRAME COUNTER FOR FILM VIDEO RECORDER COUNTER HH:MM:SS VISIBILITY CODE CLOUD IN OKTAS WEATHER CODE COMMENTS

  • A total of 701 still images were analysed from 10 transects on the Sabrina Coast continental shelf. Imagery was collected from the RVIB Nathaniel B Palmer (NBP 14-02, 29 January - 16 March 2014) across a greater than 3000 km2 area. A 'yoyo' camera, with downward facing digital still and video cameras mounted within a tubular steel frame, was deployed on a coaxial cable to image the seafloor. The Ocean Imaging Systems DSC 10000 digital still camera (10.2 megapixel, 20 mm, Nikon D-80 camera) was contained within titanium housing. Camera settings were: F-8, focus 1.9 m, ASA-400. An Ocean Imaging Systems 3831 Strobe (200 W-S) was positioned 1m from the camera at an angle of 26 degrees from vertical. A Model 494 bottom contact switch triggered the camera and strobe at 2.5m above the sea floor, imaging ~ 4.8m2 of sea floor. Parallel laser beams (10 cm separation) provided a reference scale for the images. Transects were conducted at a ship's speed of ~1 knot. Still images were characterised for main taxonomic groups and sediment properties based on the CATAMI scheme of Althaus et al. 2015.

  • These data describe pack ice characteristics in the Antarctic sea ice zone. These data are in the ASPeCt format. National program: United States Vessel: Nathaniel B. Palmer Dates in ice: 07 May 1998 - 11 Jun 1998 Observers: Martin Jeffries, others Summary of voyage track: 7/5 Ice edge at approx. 67S, 180 7-22/5 South along 180 to Ross ice shelf at approx 78S 22-27/5 West into Terra Nova Bay 28/5 - 11/6 Zig zag track to NE through Ross Sea 11/6 Ice edge at approx. 66S, 175W The fields in this dataset are: SEA ICE CONCENTRATION SEA ICE FLOE SIZE SEA ICE SNOW COVER SEA ICE THICKNESS SEA ICE TOPOGRAPHY SEA ICE TYPE RECORD DATE TIME LATITUDE LONGITUDE OPEN WATER TRACK SNOW THICKNESS SNOW TYPE SEA TEMPERATURE AIR TEMPERATURE WIND VELOCITY WIND DIRECTION FILM COUNTER FRAME COUNTER FOR FILM VIDEO RECORDER COUNTER VISIBILITY CODE CLOUD WEATHER CODE COMMENTS

  • These data describe pack ice characteristics in the Antarctic sea ice zone. These data are in the ASPeCt format. National program: United States Vessel: Nathaniel B. Palmer Dates in ice: 18 Sep 1994 - 14 Oct 1994 Observers: Martin Jeffries, Kim Morris, Rob Massom, others Summary of voyage track: 18/9 Ice edge at approx. 65S, 108W 18/9 - 14/10 Zig zag track through the pack ice to the west 14/10 Ice edge at approx. 63S, 172W The fields in this dataset are: SEA ICE CONCENTRATION SEA ICE FLOE SIZE SEA ICE SNOW COVER SEA ICE THICKNESS SEA ICE TOPOGRAPHY SEA ICE TYPE RECORD DATE TIME LATITUDE LONGITUDE OPEN WATER TRACK SNOW THICKNESS SNOW TYPE SEA TEMPERATURE AIR TEMPERATURE WIND VELOCITY WIND DIRECTION FILM COUNTER FRAME COUNTER FOR FILM VIDEO RECORDER COUNTER VISIBILITY CODE CLOUD WEATHER CODE COMMENTS

  • These data describe pack ice characteristics in the Antarctic sea ice zone. These data are in the ASPeCt format. National program: United States Vessel: Nathaniel B. Palmer Dates in ice: 02 May 1992 - 13 May 1992 Observers: Unknown (Steve Ackley and others ?) Summary of voyage track: 2-13/5 Outbound from ISW (no obs inbound) 13/5 Ice edge at approx. 61'53S, 56'02W The fields in this dataset are: SEA ICE CONCENTRATION SEA ICE FLOE SIZE SEA ICE SNOW COVER SEA ICE THICKNESS SEA ICE TOPOGRAPHY SEA ICE TYPE RECORD DATE TIME LATITUDE LONGITUDE OPEN WATER TRACK SNOW THICKNESS SNOW TYPE SEA TEMPERATURE AIR TEMPERATURE WIND VELOCITY WIND DIRECTION FILM COUNTER FRAME COUNTER FOR FILM VIDEO RECORDER COUNTER HH:MM:SS VISIBILITY CODE CLOUD IN OKTAS WEATHER CODE COMMENTS

  • These data describe pack ice characteristics in the Antarctic sea ice zone. These data are in the ASPeCt format. National program: Australia Vessel: Nathaniel B. Palmer Dates in ice: 22 Mar 1995 - 21 Apr 1995 Observers: Andrew Watkins Summary of voyage track: Complicated voyage track between 146E - 169E. The fields for this dataset are: SEA ICE CONCENTRATION SEA ICE FLOE SIZE SEA ICE SNOW COVER SEA ICE THICKNESS SEA ICE TOPOGRAPHY SEA ICE TYPE RECORD DATE TIME LATITUDE LONGITUDE OPEN WATER TRACK SNOW THICKNESS SNOW TYPE SEA TEMPERATURE AIR TEMPERATURE WIND VELOCITY WIND DIRECTION FILM COUNTER FRAME COUNTER FOR FILM VIDEO RECORDER COUNTER VISIBILITY CODE CLOUD WEATHER CODE COMMENTS

  • These data describe pack ice characteristics in the Antarctic sea ice zone. These data are in the ASPeCt format. National program: United States Vessel: Nathaniel B. Palmer Dates in ice: 27 Aug 1995 - 12 Sep 1995 Observers: Martin Jeffries, others Summary of voyage track: 27/8 Ice edge at approx. 67S, 110W 27-30/8 Transect south along 110W to approx. 70S 30/8 - 12/9 Zig zag transects eastward to ice edge at approx. 63S, 78W The fields for this dataset are: SEA ICE CONCENTRATION SEA ICE FLOE SIZE SEA ICE SNOW COVER SEA ICE THICKNESS SEA ICE TOPOGRAPHY SEA ICE TYPE RECORD DATE TIME LATITUDE LONGITUDE OPEN WATER TRACK SNOW THICKNESS SNOW TYPE SEA TEMPERATURE AIR TEMPERATURE WIND VELOCITY WIND DIRECTION FILM COUNTER FRAME COUNTER FOR FILM VIDEO RECORDER COUNTER VISIBILITY CODE CLOUD WEATHER CODE COMMENTS

  • These data describe pack ice characteristics in the Antarctic sea ice zone. These data are in the ASPeCt format. National program: United States Vessel: Nathaniel B. Palmer Dates in ice: 24 Aug 1993 - 24 Sep 1993 Observers: Martin Jeffries, Tony Worby, Kim Morris, Willy Weeks, Chris Fritsen, Ricardo Jana, Tim Qackenbush, Chua Teong Sek Summary of voyage track: 24/8 Ice edge at approx. 70S, 83W 24/8 - 24/9 Series of transects through the pack ice 24/9 Ice edge at approx 66S, 110W The fields for this dataset are: SEA ICE CONCENTRATION SEA ICE FLOE SIZE SEA ICE SNOW COVER SEA ICE THICKNESS SEA ICE TOPOGRAPHY SEA ICE TYPE RECORD DATE TIME LATITUDE LONGITUDE OPEN WATER TRACK SNOW THICKNESS SNOW TYPE SEA TEMPERATURE AIR TEMPERATURE WIND VELOCITY WIND DIRECTION FILM COUNTER FRAME COUNTER FOR FILM VIDEO RECORDER COUNTER VISIBILITY CODE CLOUD WEATHER CODE COMMENTS